Equivalence of the MTS Method and CMR Method for Differential Equations Associated with Semisimple Singularity
نویسندگان
چکیده
In this paper, the equivalence of the multiple time scales (MTS) method and the center manifold reduction (CMR) method is proved for computing the normal forms of ordinary differential equations and delay differential equations. The delay equations considered include general delay differential equations (DDE), neutral functional differential equations (NFDE) (or neutral delay differential equations (NDDE)), and partial functional differential equations (PFDE). The delays involved in these equations can be discrete or distributed. Particular attention is focused on dynamics associated with the semisimple singularity, and both the MTS and CMR methods are applied to compute the normal forms near the semisimple singular point. For the ordinary differential equations (ODE), we show that the two methods are equivalent up to any order in computing the normal forms; while for the differential equations with delays, we obtain the conditions under which the normal forms, derived by using the MTS and CMR methods, are identical up to third order. Different types of practical examples with delays are presented to demonstrate the application of the theoretical results, associated with Hopf, Hopf-zero and double-Hopf singularities.
منابع مشابه
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملA Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 24 شماره
صفحات -
تاریخ انتشار 2014